If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4x-100=0
a = 2; b = -4; c = -100;
Δ = b2-4ac
Δ = -42-4·2·(-100)
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{51}}{2*2}=\frac{4-4\sqrt{51}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{51}}{2*2}=\frac{4+4\sqrt{51}}{4} $
| 5u+6=9u=30 | | 2x/x-3=4+6/x-3 | | 3(x+4)-1=18 | | y-18=62 | | (3x+9)=−2(2x+6) | | -5(x+0.4)=6x-5 | | 50x+58-20x=30x+60-2 | | 0.3m=9 | | n-12/2=7 | | -64-6x+11x=21 | | 3(-4n-5)-4=-(12n-9) | | 2/3x+12=16 | | (m+3)+(m+2)=63 | | -49+3x-12x=104 | | 3(3x−8)=4x+63(3x−8)=4x+6 | | x+43=113 | | u/5+8=20 | | 5/9(38-32)=c | | 4/5(15x+20)-7=5/6(12x-24)+6 | | -100-2x-4x=92 | | -4|2w+6|=-32 | | 12t^2=30t | | -159-8x-9x=130 | | x/2-8=8 | | 2/3(x-5)=6+3x | | 3x/4=1/4=5 | | -28-5k=-2k-4(6k+7) | | .25g=3 | | 1/2(n+6)=1/3n | | 4^2-9x-7=0 | | 7+3x−12x=3x+1. | | 15x=95 |